且根据先前的情况大致可以推断,自己这支小队不一定挡得住那名界族,因此失去据点的概率很大,将其收益用数据量化应该是<-5;
假如α小队队长是那名冰系界族,α小队留下,β离开,自己就会同时受到两名界族的威胁,失去据点的概率就更大,将其收益用数据量化就是-10;
假如α小队队长不是那名冰系界族,α小队留下,β离开,最后就是由α小队和自己的小队一同承受一名暗杀者界族以及一名可能存在可能不存在的冰系界族的威胁,即使也有可能失去据点,但是概率明显比单独的自己一支小队更小,将其收益用数据量化是<-2.5;
假如α小队队长是那名冰系界族,β小队留下,α离开,那就相当于还是放跑了那名冰系界族,收益记作-5,最后由自己和β小队一起面对那名暗杀者界族,其最终收益用数据量化是-7.5;
假如α小队队长不是那名冰系界族,β小队留下,α离开,那么α的离开没有任何收益支出,记作0,最终由自己和β小队一起面对那名暗杀者界族,其最终收益用数据量化是-2.5;
假如α小队队长是那名冰系界族,α小队和β小队一起留下,那么就需要同时面对冰系界族和暗杀界族的威胁,但是又因为有β小队的帮忙,最终的收益用数据量化是-10<x<-2.5;
假如α小队队长不是那名冰系界族,α小队和β小队一起留下,那么就相当于三支队伍同时面对那名暗杀界族外加一名可能存在可能并不存在的冰系界族,其最终的收益用数据量化是<-1;
在这些情况中对“外部追捕小队”队长最有利的方案就是α小队和β小队一起留下,这样能最大可能性的保证据点的安全性。
然而这个选择对α小队和β小队就不一样了。
用同样的方法类比其实就可以发现,无论是α小队还是β小队,都是选择让对方留下,自己离开才会使得自己的收益最大化。
也就说,此时原本应该统一的策略在那不知名存在X的介入下,其最优解已经发生了变化。
除非有人愿意牺牲自己的利益,否则三人根本无法得出一个统一的最优解。